Didáctica de la Química Practica de laboratorio Obtención de oxígeno

Marla Camacho Ochoa

Introducción

El oxígeno es un gas incoloro, inodoro, es uno de los elementos más abundantes de la tierra. 1/5 del aire es oxígeno, al igual que el 47% de la superficie y 89% de los océanos, este elemento puede ser obtenido fácilmente en el laboratorio por descomposición o composición de ciertas sustancias reactivas, en la que se destacara la descomposición térmica de clorato de potasio que es una sal formada por un anión clorato y el catión potasio, En su forma pura se encuentra en estado sólido formando cristales de color blanco.

Objetivo

Obtener oxígeno mediante la descomposición del clorato de potasio.

Objetivos específicos

- Comprender las propiedades del oxígeno.
- Producir oxígeno mediante descomposición de clorato de potasio.
- Calcular la masa molar del oxígeno.

Materiales y reactivos

- Tubo de ensayo
- Mechero Bunsen
- Clorato de potasio KClO₃

Marco Teórico

El estado del oxígeno en su forma natural es gaseoso (paramagnético). El oxígeno es un elemento químico de aspecto incoloro y pertenece al grupo de los no metales. El número atómico del oxígeno es 8. El símbolo químico del oxígeno es O_2 posee una masa molar de 15.9994 u se puede obtener por descomposición del clorato de potasio $KClO_3$.

La forma más común de generar oxígeno en el laboratorio es a través del calentamiento de clorato de potasio (en presencia de calor), el potasio se descompondrá produciéndose oxígeno gas y cloruro de potasio:

$$2KClO_3 + calor \rightarrow 2KCl + 3O_2$$

Procedimiento

Paso 1. Obtener un tubo de ensayo; colocar 10g de clorato de potasio.

Paso 2. Calentar el tubo de ensayo hasta que se produzca todo el O2.

Paso 3. Anotar la cantidad de O₂ producida usando el cuadro de diálogo de propiedades (hacer doble clic en el tubo de ensayo para que se abra la ventana de propiedades).

Observaciones

Masa del O₂ producido:

Oxigeno O_2 (Gas) (3,915576g) (0,122400 moles)

Cloruro de potasio KCI (Sólido) (6,083363g)(0,081600 moles)

Resultados

Teniendo en cuenta la masa de oxígeno producida, ¿se puede determinar su masa molar?

$$2\mathsf{KClO}_3 + \mathsf{calor} \to 2\mathsf{KCl} + 3O_2$$

$$10_{\,\,\mathrm{g}}\mathsf{KClO}_3 \to 3,915576_{\,\,\mathrm{g}}O_2$$

$$0,081600_{\,\,\mathrm{moles}}\mathsf{KClO}_3 \to 0,122400_{\,\,\mathrm{moles}}O_2$$

$$\mathsf{PM}\ O_2 = \frac{\mathsf{Masa}\ O_2\ \mathsf{obtenidos}}{\mathsf{Moles}\ O_2}$$

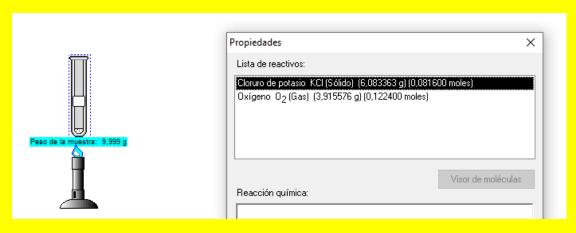
$$\mathsf{PM}\ O_2 = \frac{3,915576_{\,\,\mathrm{g}}O_2}{0,122400_{\,\,\mathrm{moles}}O_2}$$

$$\mathsf{PM}\ O_2 = 31,99\ \frac{\mathsf{g}}{\mathsf{Mol}}O_2$$

$$\mathsf{PM}\ \mathsf{Oxígeno} = 15,99\ \frac{\mathsf{g}}{\mathsf{Mol}}$$

Análisis de resultados

Al aplicar calor mediante el mechero Bunsen, se produce una reacción de transferencia de electrones, los átomos del combustible (Oxígeno) ceden electrones a los átomos del oxidante y se combinan con el oxígeno. Debido a esto, el cloruro de potasio es un agente oxidante que proporciona el oxígeno necesario para la combustión y se pueda quemar el oxígeno o liberarse.


Conclusión

Al momento de producir oxígeno mediante descomposición de clorato de potasio, se concluye que: Por medio de los gramos producidos del gas liberado se determina su masa molar; demostrando así, que es oxígeno por sus propiedades mencionadas en la literatura.

Referencias

- ChemLab
- https://elementos.org.es/oxigeno
- Prada Pérez de Azpeitia, F. I. D. (2006). El fuego: química y espectáculo. In Anales de la Real Sociedad Española de Química (No. 2, pp. 54-59). Real Sociedad Española de Química.
- https://www.fio.unicen.edu.ar/usuario/segumar/Laura/material/Qu%EDmic a%20del%20Fuego.pdf

Anexos

Fuente: Chemlab Practica "Obtención de oxígeno"